## Causal Inference What If - Chapter 6

#### Insung Kong

Seoul National University Department of Statistics

July 22, 2021

Insung Kong (SNU) Causal Inference

Causal Inference What If - Chapter 6

July 22, 2021

1 DAG examples (pp.  $69 \sim 75$ )

**2** D-separation (pp.  $76 \sim 77$ )



# Section 1

# DAG examples (pp. $69 \sim 75$ )

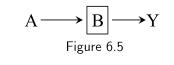
Insung Kong (SNU) Causal Inference What If - Chapter 6

July 22, 2021 3 / 18



Figure 6.2

- A is temporally prior to Y
- There is a **direct causal effect** for at least one individual.
- Square box : restriction (=condition)


Between A & Y...

 $\bullet~ {\rm B}$  : Mediator

$$A \longrightarrow B \longrightarrow Y$$

Figure (자작)

 ${\bf A}$  and  ${\bf Y}$  : Causal effect O, Associated O



A and Y : Causal effect O, Associated  $\times$ 

Insung Kong (SNU)

Causal Inference What If - Chapter 6

July 22, 2021

Between A & Y...

 $\bullet~ {\rm L}$  : Common Cause

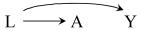



Figure 6.3

 $\mathbf{A}$  and  $\mathbf{Y}$ : Causal effect  $\times$ , Associated O

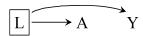



Figure 6.6

**A** and **Y** : Causal effect  $\times$ , Associated  $\times$ 

Insung Kong (SNU)

Causal Inference What If - Chapter 6

July 22, 2021

Between A & Y...

 $\bullet$  L : Colider

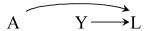
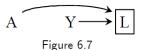
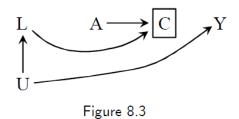




Figure 6.4

 ${\bf A}$  and  ${\bf Y}$  : Causal effect  $\times,$  Associated  $\times$ 




 $\mathbf{A}$  and  $\mathbf{Y}$ : Causal effect  $\times$ , Associated O

Insung Kong (SNU)

Causal Inference What If - Chapter 6

July 22, 2021

Between A &  $\mathbf{Y}$ ...



#### Are A and Y associated?

# Section 2

# D-separation (pp. $76 \sim 77$ )

Insung Kong (SNU) Causal Inference What If - Chapter 6

#### Process to define D-separation

- **①** Define "**path**" with length n
- 2 Define "blocked" on length 2 path
- **③** Define **"blocked"** on arbitrary path
- Objective Define "D-separation" on DAG

### **D**-separation

- **1** Define "**path**" with length n
- $V_0 \sim V_1 \sim \cdots \sim V_n$ ,  $n \ge 1$ , No duplicate

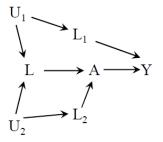



Figure 7.6

- Example  $1: L \sim A \sim Y$
- Example 2 :  $L_2 \sim U_2 \sim L \sim U_1 \sim L_1 \sim Y$

Insung Kong (SNU)

#### **2** Define **"blocked"** on length 2 path

|                 | Mediator                                                          | Common Cause                                 | Colider                                                       |
|-----------------|-------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|
| w/o conditioned | Opened<br>$A \longrightarrow B \longrightarrow Y$<br>Figure (XIR) | $L \xrightarrow{\text{Opened}} Y$ Figure 6.3 | $A \xrightarrow{Y \longrightarrow L}_{Figure \ 6.4}$          |
| w/ conditioned  | Blocked<br>$A \longrightarrow B \longrightarrow Y$<br>Figure 6.5  | Blocked<br>$L  A _{Figure \ 6.6} Y$          | Opened<br>$A \xrightarrow{Y \longrightarrow L}$<br>Figure 6.7 |

Insung Kong (SNU) Causal

Causal Inference What If - Chapter 6

July 22, 2021

- **(3)** Define **"D-separation"** on DAG
  - length 1 path : Opened
  - length 2 path : already defined
  - length n path (n > 2) :
    - Path has n-1 length 2 sub-paths
    - Path is blocked iff some length 2 length 2 sub-paths is blocked
- **(1)** Define **"D-separation"** on DAG
- A is **d-separated** from Y conditional of L iff Every paths between A and Y are blocked conditional of L

Pearl (1988) proved the following fundamental theorem :

A is d-separated from Y conditional of L

 $\implies$  A and Y are independent(=not associated) given L

Converse holds under "Faithfulness conditions".

#### $Discovery: Data \implies DAG$

- (1) Find **conditional independence** relationships
- (2) Find **d-separated** relationships
- (3) Make DAG with time information and **d-separated** relationships
  - (1)  $\implies$  (2) : Faithfulness conditions
  - (2)  $\implies$  (3) : Often impossible because it's not identifiable

# Section 3

# Systematic bias (pp. $78 \sim 82$ )

Insung Kong (SNU) Causal Inference What If - Chapter 6 Ju

We say there is **systematic bias** when data are **insufficient** to identify the **causal effect** even with an infinite sample size.

• (Unconditional) Bias :

$$\Pr \left[ Y^{a=1} = 1 \right] - \Pr \left[ Y^{a=0} = 1 \right] \\ \neq \Pr[Y = 1 \mid A = 1] - \Pr[Y = 1 \mid A = 0]$$

• Conditional Bias :

$$\Pr \left[ Y^{a=1} = 1 \mid L = l \right] - \Pr \left[ Y^{a=0} = 1 \mid L = l \right]$$
  

$$\neq \Pr[Y = 1 \mid L = l, A = 1] - \Pr[Y = 1 \mid L = l, A = 0]$$

There are Three types of systematic bias

- Confounding : Chapter 7
- Selection Bias : Chapter 8
- Measurement Bias : Chapter 9